Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Viruses ; 14(12)2022 12 09.
Article in English | MEDLINE | ID: covidwho-2155316

ABSTRACT

Because of the interface between coagulation and the immune response, it is expected that COVID-19-associated coagulopathy occurs via activated protein C signaling. The objective was to explore putative changes in the expression of the protein C signaling network in the liver, peripheral blood mononuclear cells, and nasal epithelium of patients with COVID-19. Single-cell RNA-sequencing data from patients with COVID-19 and healthy subjects were obtained from the COVID-19 Cell Atlas database. A functional protein-protein interaction network was constructed for the protein C gene. Patients with COVID-19 showed downregulation of protein C and components of the downstream protein C signaling cascade. The percentage of hepatocytes expressing protein C was lower. Part of the liver cell clusters expressing protein C presented increased expression of ACE2. In PBMC, there was increased ACE2, inflammatory, and pro-coagulation transcripts. In the nasal epithelium, PROC, ACE2, and PROS1 were expressed by the ciliated cell cluster, revealing co-expression of ACE-2 with transcripts encoding proteins belonging to the coagulation and immune system interface. Finally, there was upregulation of coagulation factor 3 transcript in the liver and PBMC. Protein C could play a mechanistic role in the hypercoagulability syndrome affecting patients with severe COVID-19.


Subject(s)
COVID-19 , Thrombophilia , Humans , COVID-19/genetics , Leukocytes, Mononuclear/metabolism , SARS-CoV-2/genetics , Protein C/genetics , Protein C/metabolism , Down-Regulation , Transcriptome , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Peptidyl-Dipeptidase A/metabolism , Thrombophilia/genetics
2.
J Med Case Rep ; 16(1): 326, 2022 Aug 23.
Article in English | MEDLINE | ID: covidwho-2002224

ABSTRACT

BACKGROUND: We speculated that subclinical thrombosis may occur frequently through crosstalk between immune/inflammatory reactions and hemostasis after corona virus disease-2019 (COVID-19) vaccination. To test this hypothesis, we measured thrombosis-related parameters after COVID-19 vaccination in a volunteer for 21 days. CASE PRESENTATION: The following parameters were measured in a 72-year-old Korean man at 1 day before vaccination and on days 1, 3, 7, 14, and 21 post vaccination (AstraZeneca COVID-19 vaccine: ChAdOx1-S/nCoV-19, CTMAV563): complete blood count, platelet indices, thrombin receptor-activating peptide-induced platelet aggregation, prothrombin time, activated partial thromboplastin time, D-dimer, thrombin-antithrombin III complex (TAT), plasmin-α2 antiplasmin complex (PAP), von Willebrand factor (vWF) antigen and activity, plasminogen activator inhibitor-1 (PAI-1), protein C and protein S antigen and activity, lupus anticoagulant, fibrinogen degradation product, and plasminogen. We found that the TAT had significantly increased from 0.7 ng/mL (baseline) to 21.7 ng/mL (day 1). There was a transient increase in the PAI-1 level from 7.2 ng/mL (baseline) to 10.9 ng/mL (day 3), followed by a decrease in PAP level from 0.9 ng/mL (baseline) to 0.3 µg/mL (day 7), suggesting that plasmin generation is suppressed by PAI-1. CONCLUSIONS: Increased thrombotic factors (such as decreased protein S) and decreased fibrinolytic activity due to increased PAI-1 were potential factors causing thrombogenesis after COVID-19 vaccination. Sequential measurement of platelet indices, TAT, PAP, protein C, protein S, vWF, D-dimer, and PAI-1 following COVID-19 vaccination was informative.


Subject(s)
COVID-19 Vaccines , COVID-19 , Thrombosis , 2019-nCoV Vaccine mRNA-1273 , Aged , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Fibrinolysin/metabolism , Humans , Male , Plasminogen Activator Inhibitor 1 , Protein C/metabolism , Protein S , Thrombosis/etiology , Vaccination , Volunteers , von Willebrand Factor/metabolism
3.
Front Immunol ; 12: 762782, 2021.
Article in English | MEDLINE | ID: covidwho-1593084

ABSTRACT

Coagulopathy is a frequently reported finding in the pathology of coronavirus disease 2019 (COVID-19); however, the molecular mechanism, the involved coagulation factors, and the role of regulatory proteins in homeostasis are not fully investigated. We explored the dynamic changes of nine coagulation tests in patients and controls to propose a molecular mechanism for COVID-19-associated coagulopathy. Coagulation tests including prothrombin time (PT), partial thromboplastin time (PTT), fibrinogen (FIB), lupus anticoagulant (LAC), proteins C and S, antithrombin III (ATIII), D-dimer, and fibrin degradation products (FDPs) were performed on plasma collected from 105 individuals (35 critical patients, 35 severe patients, and 35 healthy controls). There was a statically significant difference when the results of the critical (CRT) and/or severe (SVR) group for the following tests were compared to the control (CRL) group: PTCRT (15.014) and PTSVR (13.846) (PTCRL = 13.383, p < 0.001), PTTCRT (42.923) and PTTSVR (37.8) (PTTCRL = 36.494, p < 0.001), LACCRT (49.414) and LACSVR (47.046) (LACCRL = 40.763, p < 0.001), FIBCRT (537.66) and FIBSVR (480.29) (FIBCRL = 283.57, p < 0.001), ProCCRT (85.57%) and ProCSVR (99.34%) (ProCCRL = 94.31%, p = 0.04), ProSCRT (62.91%) and ProSSVR (65.06%) (ProSCRL = 75.03%, p < 0.001), D-dimer (p < 0.0001, χ2 = 34.812), and FDP (p < 0.002, χ2 = 15.205). No significant association was found in the ATIII results in groups (ATIIICRT = 95.71% and ATIIISVR = 99.63%; ATIIICRL = 98.74%, p = 0.321). D-dimer, FIB, PT, PTT, LAC, protein S, FDP, and protein C (ordered according to p-values) have significance in the prognosis of patients. Disruptions in homeostasis in protein C (and S), VIII/VIIIa and V/Va axes, probably play a role in COVID-19-associated coagulopathy.


Subject(s)
Blood Coagulation Disorders/blood , Blood Coagulation Tests/methods , Blood Coagulation , COVID-19/complications , Adult , Aged , Blood Coagulation Disorders/complications , Blood Coagulation Disorders/diagnosis , Blood Coagulation Factors/metabolism , COVID-19/virology , Female , Fibrin/metabolism , Fibrin Fibrinogen Degradation Products/metabolism , Homeostasis , Humans , Male , Middle Aged , Partial Thromboplastin Time , Prognosis , Protein C/metabolism , Prothrombin Time , SARS-CoV-2/genetics , SARS-CoV-2/physiology
4.
PLoS One ; 16(10): e0258754, 2021.
Article in English | MEDLINE | ID: covidwho-1477539

ABSTRACT

Continuous positive airway pressure (CPAP) has been successfully applied to patients with COVID-19 to prevent endotracheal intubation. However, experience of CPAP application in pregnant women with acute respiratory failure (ARF) due to SARS-CoV-2 pneumonia is scarce. This study aimed to describe the natural history and outcome of ARF in a cohort of pregnant women with SARS-CoV-2 pneumonia, focusing on the feasibility of helmet CPAP (h-CPAP) application and the variables related to ARF worsening. A retrospective, observational study enrolling 41 consecutive pregnant women hospitalised for SARS-CoV-2 pneumonia in a tertiary care center between March 2020 and March 2021. h-CPAP was applied if arterial partial pressure of oxygen to fraction of inspired oxygen ratio (PaO2/FiO2) was inferior to 200 and/or patients had respiratory distress despite adequate oxygen supplementation. Characteristics of patients requiring h-CPAP vs those in room air or oxygen only were compared. Twenty-seven (66%) patients showed hypoxemic ARF requiring oxygen supplementation and h-CPAP was needed in 10 cases (24%). PaO2/FiO2 was significantly improved during h-CPAP application. The device was well-tolerated in all cases with no adverse events. Higher serum C reactive protein and more extensive (≥3 lobes) involvement at chest X-ray upon admission were observed in the h-CPAP group. Assessment of temporal distribution of cases showed a substantially increased rate of CPAP requirement during the third pandemic wave (January-March 2021). In conclusion, h-CPAP was feasible, safe, well-tolerated and improved oxygenation in pregnant women with moderate-to-severe ARF due to SARS-CoV-2 pneumonia. Moderate-to-severe ARF was more frequently observed during the third pandemic wave.


Subject(s)
COVID-19 , Continuous Positive Airway Pressure , Oxygen/administration & dosage , Pregnancy Complications, Infectious , Respiratory Insufficiency , SARS-CoV-2/metabolism , Tertiary Care Centers , Acute Disease , Adult , COVID-19/blood , COVID-19/therapy , Female , Humans , Oxygen/blood , Pregnancy , Pregnancy Complications, Infectious/blood , Pregnancy Complications, Infectious/therapy , Protein C/metabolism , Respiratory Insufficiency/blood , Respiratory Insufficiency/therapy , Retrospective Studies
5.
Front Endocrinol (Lausanne) ; 12: 658304, 2021.
Article in English | MEDLINE | ID: covidwho-1305636

ABSTRACT

Objective: Detailed proteomic analysis in a cohort of patients with differing severity of COVID-19 disease identified biomarkers within the complement and coagulation cascades as biomarkers for disease severity has been reported; however, it is unclear if these proteins differ sufficiently from other conditions to be considered as biomarkers. Methods: A prospective, parallel study in T2D (n = 23) and controls (n = 23). A hyperinsulinemic clamp was performed and normoglycemia induced in T2D [4.5 ± 0.07 mmol/L (81 ± 1.2 mg/dl)] for 1-h, following which blood glucose was decreased to ≤2.0 mmol/L (36 mg/dl). Proteomic analysis for the complement and coagulation cascades were measured using Slow Off-rate Modified Aptamer (SOMA)-scan. Results: Thirty-four proteins were measured. At baseline, 4 of 18 were found to differ in T2D versus controls for platelet degranulation [Neutrophil-activating peptide-2 (p = 0.014), Thrombospondin-1 (p = 0.012), Platelet factor-4 (p = 0.007), and Kininogen-1 (p = 0.05)], whilst 3 of 16 proteins differed for complement and coagulation cascades [Coagulation factor IX (p < 0.05), Kininogen-1 (p = 0.05), and Heparin cofactor-2 (p = 0.007)]; STRING analysis demonstrated the close relationship of these proteins to one another. Induced euglycemia in T2D showed no protein changes versus baseline. At hypoglycemia, however, four proteins changed in controls from baseline [Thrombospondin-1 (p < 0.014), platelet factor-4 (p < 0.01), Platelet basic protein (p < 0.008), and Vitamin K-dependent protein-C (p < 0.00003)], and one protein changed in T2D [Vitamin K-dependent protein-C, (p < 0.0002)]. Conclusion: Seven of 34 proteins suggested to be biomarkers of COVID-19 severity within the platelet degranulation and complement and coagulation cascades differed in T2D versus controls, with further changes occurring at hypoglycemia, suggesting that validation of these biomarkers is critical. It is unclear if these protein changes in T2D may predict worse COVID-19 disease for these patients. Clinical Trial Registration: https://clinicaltrials.gov/, identifier NCT03102801.


Subject(s)
Blood Coagulation Factors/metabolism , COVID-19/metabolism , Diabetes Mellitus, Type 2/metabolism , Hypoglycemia/metabolism , Aged , Biomarkers/metabolism , Blood Coagulation , Case-Control Studies , Complement Activation , Factor IX/metabolism , Female , Glucose Clamp Technique , Heparin Cofactor II/metabolism , Humans , Kininogens/metabolism , Male , Middle Aged , Peptides/metabolism , Platelet Activation , Platelet Factor 4/metabolism , Prospective Studies , Protein C/metabolism , Proteomics , SARS-CoV-2 , Severity of Illness Index , Thrombospondin 1/metabolism , beta-Thromboglobulin/metabolism
6.
Mol Metab ; 53: 101262, 2021 11.
Article in English | MEDLINE | ID: covidwho-1253402

ABSTRACT

OBJECTIVE: Obesity, in particular visceral obesity, and insulin resistance emerged as major risk factors for severe coronavirus disease 2019 (COVID-19), which is strongly associated with hemostatic alterations. Because obesity and insulin resistance predispose to thrombotic diseases, we investigated the relationship between hemostatic alterations and body fat distribution in participants at risk for type 2 diabetes. SUBJECTS: Body fat distribution (visceral and subcutaneous abdominal adipose tissue) and liver fat content of 150 participants - with impaired glucose tolerance and/or impaired fasting glucose - were determined using magnetic resonance imaging and spectroscopy. Participants underwent precise metabolic characterization and major hemostasis parameters were analyzed. RESULTS: Procoagulant factors (FII, FVII, FVIII, and FIX) and anticoagulant proteins (antithrombin, protein C, and protein S) were significantly associated with body fat distribution. In patients with fatty liver, fibrinogen (298 mg/dl vs. 264 mg/dl, p = 0.0182), FVII (99% vs. 90%, p = 0.0049), FVIII (114% vs. 90%, p = 0.0098), protein C (124% vs. 111%, p = 0.0006), and protein S (109% vs. 89%, p < 0.0001) were higher than in controls. In contrast, antithrombin (97% vs. 102%, p = 0.0025) was higher in control patients. In multivariate analyses controlling for insulin sensitivity, body fat compartments, and genotype variants (PNPLA3I148MM/MI/TM6SF2E167kK/kE), only protein C and protein S remained significantly increased in fatty liver. CONCLUSIONS: Body fat distribution is significantly associated with alterations of procoagulant and anticoagulant parameters. Liver fat plays a key role in the regulation of protein C and protein S, suggesting a potential counteracting mechanism to the prothrombotic state in subjects with prediabetes and fatty liver.


Subject(s)
Body Fat Distribution , COVID-19/complications , Diabetes Mellitus, Type 2/epidemiology , Fatty Liver/epidemiology , Hemostasis/physiology , Aged , COVID-19/blood , COVID-19/physiopathology , Cohort Studies , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/physiopathology , Fatty Liver/blood , Fatty Liver/diagnosis , Fatty Liver/physiopathology , Female , Humans , Insulin Resistance/physiology , Liver/diagnostic imaging , Magnetic Resonance Imaging , Male , Middle Aged , Protein C/analysis , Protein C/metabolism , Protein S/analysis , Protein S/metabolism , Randomized Controlled Trials as Topic , Risk Factors , SARS-CoV-2/pathogenicity
7.
PLoS One ; 15(12): e0243604, 2020.
Article in English | MEDLINE | ID: covidwho-977705

ABSTRACT

BACKGROUND: Coagulation abnormalities in COVID-19 patients have not been addressed in depth. OBJECTIVE: To perform a longitudinal evaluation of coagulation profile of patients admitted to the ICU with COVID-19. METHODS: Conventional coagulation tests, rotational thromboelastometry (ROTEM), platelet function, fibrinolysis, antithrombin, protein C and S were measured at days 0, 1, 3, 7 and 14. Based on median total maximum SOFA score, patients were divided in two groups: SOFA ≤ 10 and SOFA > 10. RESULTS: Thirty patients were studied. Some conventional coagulation tests, as aPTT, PT and INR remained unchanged during the study period, while alterations on others coagulation laboratory tests were detected. Fibrinogen levels were increased in both groups. ROTEM maximum clot firmness increased in both groups from Day 0 to Day 14. Moreover, ROTEM-FIBTEM maximum clot firmness was high in both groups, with a slight decrease from day 0 to day 14 in group SOFA ≤ 10 and a slight increase during the same period in group SOFA > 10. Fibrinolysis was low and decreased over time in all groups, with the most pronounced decrease observed in INTEM maximum lysis in group SOFA > 10. Also, D-dimer plasma levels were higher than normal reference range in both groups and free protein S plasma levels were low in both groups at baseline and increased over time, Finally, patients in group SOFA > 10 had lower plasminogen levels and Protein C ​​than patients with SOFA <10, which may represent less fibrinolysis activity during a state of hypercoagulability. CONCLUSION: COVID-19 patients have a pronounced hypercoagulability state, characterized by impaired endogenous anticoagulation and decreased fibrinolysis. The magnitude of coagulation abnormalities seems to correlate with the severity of organ dysfunction. The hypercoagulability state of COVID-19 patients was not only detected by ROTEM but it much more complex, where changes were observed on the fibrinolytic and endogenous anticoagulation system.


Subject(s)
COVID-19/blood , COVID-19/physiopathology , Intensive Care Units , SARS-CoV-2/pathogenicity , Aged , Aged, 80 and over , Antithrombins/blood , Blood Coagulation Tests , COVID-19/diagnosis , COVID-19/virology , Female , Fibrinolysis/physiology , Humans , Male , Middle Aged , Platelet Function Tests/methods , Protein C/metabolism , Protein S/metabolism , Thrombelastography/methods
8.
A A Pract ; 14(7): e01236, 2020 May.
Article in English | MEDLINE | ID: covidwho-601387

ABSTRACT

Critically ill patients with coronavirus disease 2019 (COVID-19) have been observed to be hypercoagulable, but the mechanisms for this remain poorly described. Factor VIII is a procoagulant factor that increases during inflammation and is cleaved by activated protein C. To our knowledge, there is only 1 prior study of factor VIII and functional protein C activity in critically ill patients with COVID-19. Here, we present a case series of 10 critically ill patients with COVID-19 who had severe elevations in factor VIII activity and low normal functional protein C activity, which may have contributed to hypercoagulability.


Subject(s)
Coronavirus Infections/blood , Factor VIII/metabolism , Pneumonia, Viral/blood , Protein C/metabolism , Respiratory Distress Syndrome/blood , Thrombophilia/blood , Acute Kidney Injury/epidemiology , Acute Kidney Injury/therapy , Adult , Aged , Aged, 80 and over , Antithrombins/metabolism , Betacoronavirus , C-Reactive Protein/metabolism , COVID-19 , Comorbidity , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Critical Illness , Diabetes Mellitus/epidemiology , Dyslipidemias/epidemiology , Extracorporeal Membrane Oxygenation , Female , Ferritins/metabolism , Fibrin Fibrinogen Degradation Products/metabolism , Fibrinogen/metabolism , Humans , Hypertension/epidemiology , International Normalized Ratio , Male , Middle Aged , Obesity/epidemiology , Pandemics , Partial Thromboplastin Time , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , Prothrombin Time , Renal Dialysis , Renal Insufficiency, Chronic/epidemiology , Respiration, Artificial , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/therapy , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL